14 research outputs found

    Optimization study on surface roughness and tribological behavior of recycled cast iron reinforced bronze MMCs produced by hot pressing

    Get PDF
    Surface roughness reflects the quality of many operational parameters, namely service life, wear characteristics, working performance and tribological behavior of the produced part. Therefore, tribological performance is critical for the components used as tandem parts, especially for the MMCs (Metal Matrix Composites) which are a unique class of materials having extensive application areas such as aerospace, aeronautics, marine engineering and the defense industry. Current work covers the optimization study of production parameters for surface roughness and tribological indicators of newly produced cast iron reinforced bronze MMCs. In this context, two levels of temperature (400 and 450 °C), three levels of pressure (480, 640 and 820 MPa) and seven levels of reinforcement ratios (60/40, 70/30, 80/20, 90/10, 100/0 of GGG40/CuSn10, pure bronze-as received and pure cast iron-as received) are considered. According to the findings obtained by Taguchi’s signal-to-noise ratios, the reinforcement ratio has a dominant effect on surface roughness parameters (Ra and Rz), the coefficient of friction and the weight loss in different levels. In addition, 100/0 reinforced GGG40/CuSn10 gives minimum surface roughness, pure cast iron provides the best weight loss and pure bronze offers the desired coefficient of friction. The results showed the importance of material ingredients on mechanical properties by comparing a wide range of samples from starting the production phase, which provides a perspective for manufacturers to meet the market supply as per human requirements

    Microstructural and Mechanical Characterization of 9Cr-1Mo-1W Weld Metal

    Get PDF
    This paper presents microstructural and mechanical characterization of E911 welds metal. The types and transformations of the phases and microstructures of all-weld metal have been investigated through scanning electron microscopy, optical microscope, x-ray diffraction analysis. The elemental analysis and mechanical tests of the weld metal was determined by x-ray fluorescence, hardness measurements, and tensile tests respectively. This study will contribute the understanding of microstructural progression, microstructure characterization and mechanical properties of E911 steel after the post-weld heat treatment PWHT

    Evaluation of the Role of Dry and MQL Regimes on Machining and Sustainability Index of Strenx 900 Steel

    No full text
    Sustainable technologies draw attention in the machining industry thanks to their contributions in many aspects such as ecological, economic, and technological. Minimum quantity lubrication (MQL) is one of these techniques that enable to convey of the high pressurized cutting fluid toward the cutting zone as small oil particulates. This study examines the potency of MQL technology versus dry conditions on the machining quality during the milling of structural Strenx 900 steel within the sustainability index. High strength and toughness properties make this steel a hard-to-cut material providing an important opportunity to test the performances of dry and MQL environments. The outcomes of the experimental data demonstrated that MQL is superior in enhancing the quality of significant machining characteristics namely surface roughness (up to 35%), flank wear (up to 94%), wear mechanisms, cutting energy (up to 28%), and cutting temperatures (up to 14%). Furthermore, after analyzing the main headings of the sustainable indicators, MQL provided the same (+5) desirability value with a dry (+5) medium. This experimental work presents a comparative approach for improved machinability of industrially important materials by questioning the impact of sustainable methods

    The Effects of MQL and Dry Environments on Tool Wear, Cutting Temperature, and Power Consumption during End Milling of AISI 1040 Steel

    No full text
    Minimum quantity lubrication (MQL) is a sustainable method that has been efficiently applied to achieve machinability improvements with various materials in recent years, such as hardened steels, superalloys, soft metals, and composites. This study is the first to focus on the performance evaluation of MQL and dry milling environments with AISI 1040 steel. The tool wear, cutting temperature, and power consumption were considered as the quality responses while cutting speed, feed rate and machining environment are taken as input parameters. The effects of the influential factors are analyzed using analysis of variance (ANOVA) and bar charts. Additionally, Taguchi signal-to-noise (S/N) ratios are utilized in order to determine the optimum parameters for the best quality responses. The results show that the MQL system provides better performance compared to dry milling by reducing the tool wear, cutting temperature, and power consumption. According to the ANOVA results, the cutting environment affects the cutting temperature (37%) and power consumption (94%), while cutting speed has importance effects on the tool wear (74%). A lower cutting speed (100 m/min) and feed rate (0.10 mm/rev) should be selected under MQL conditions to ensure minimum tool wear and power consumption; however, a higher feed rate (0.15 mm/rev) needs to be selected along with a low cutting speed and MQL conditions to ensure better temperatures. A comparative evaluation is carried out on the tool wear, cutting temperature, and power consumption under MQL and dry environments. This investigation is expected to contribute to the current literature, highlighting the superiority of sustainable methods in the milling of industrially important materials

    Production and mechanical characterization of prismatic shape machine element by recycling of bronze and cast-iron chips

    No full text
    Bu çalışmada küresel grafitli dökme demir (GGG-40) ve Bronz (CuSn10) talaşlarının izostatik sıcakpresleme yöntemiyle geri dönüştürülmesi ile üretilen metal matrisli kompozit malzemelerin (MMK) üretimive mekanik davranışları incelenmiştir. MMK malzemeler 4 farklı karışım oranında 3 farklı sıcaklıkta ve 3farklı basınçta üretilerek üretim parametrelerinin gözeneklilik, sertlik ve eğilme mukavemeti üzerine etkisiincelenmiştir. Prizmatik geometrili olarak üretilen numunelerin öncelikle gözeneklilik ve yoğunluk değerleritespit edilmiştir. Daha sonra Brinell ve Mikro Vickers ve 3 noktadan eğilme deneyleri ile MMKmalzemelerin mukavemeti belirlenmiştir. Optik mikroskopi tekniği ile mikro yapı görüntüleri incelenerektalaşların birleşme mekanizması incelenmiştir. Ayrıca XRD analizi aracılığıyla metalik talaşlar arasında arafaz oluşumu olup olmadığı sorgulanmıştır. Gözeneklilik deneyleri neticesinde %20 mertebelerindegözeneklilik elde edilmiştir. Aşırı plastik deformasyon gösteren CuSn10 sebebiyle mukavemeti artanCuSn10 talaşları sertlik değerini Bulk CuSn10 ile kıyaslanabilir seviyelere getirmiştir. Eğilme deneyineticesinde MMK malzemelerin eğilme mukavemetleri bulk CuSn10’dan düşük çıkmıştır. Sonuç olarakmetal talaşların başarılı bir biçimde metal matris kompozit haline getirilebileceği gösterilmiştir.In this study, the production and mechanical properties of porous metal matrix composites (MMC’s) byrecycling of spheroid cast iron chips (GGG-40) and bronze chips (CuSn10) by hot isostatic pressing wasinvestigated. The metal matrix composites were produced with four different CuSn10 contents, threedifferent pressures and temperatures and effects of production parameters on porosity, hardness, flexureproperties were examined. Samples were produced in prismatic shape with specified porosity. Themechanical properties were determined by Brinell and Micro Vickers hardness tests and three-point bendingtest. The consolidation mechanism of metallic chips was also investigated with optic microscopy. It wasexamined whether any second phase occurred between metallic chips by the help of XRD test. As a result ofporosity test, it is found that metal matrix composites can have porosity value of as much as 20%. It is alsoshowed that owing to excessive plastic deformation of CuSn10, the hardness of MMC material can be higherthan bulk CuSn10. Three-point bending test showed that the flexure properties of MMC materials are islower than that of bulk CuSn10. As a consequence, it showed that metallic chips were recycled with hotpressing successfully
    corecore